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Abstract—In this study, we have implemented a classic feature
based stereo visual odometry (VO) pipeline to gain experience
on processing stereo images and estimating vehicle egomotion
solely based on vision input. In our VO algorithm, SURF
image features are extracted and matched by using the sum
of squared difference similarity metric to generate both stereo
matches and between-frame feature correspondences. A 3D-to-
3D point cloud alignment problem is then set up to estimate
the relative camera pose between two constitutive timesteps, and
the full trajectory of the vehicle motion is finally produced by
compounding the incremental pose changes. The performance of
our VO implementation is evaluated on datasets extracted from
the publicly available database: KITTI Vision Benchmark Suite.

SUPPLEMENTARY MATERIAL

Results of our VO implementation on several KITTI
datasets are available at: https://youtu.be/gEiOCKHEKbY

I. INTRODUCTION

Visual odometry (VO) is the process of estimating the
incremental motion of an agent (e.g. vehicle, robot) by using
the image information captured by one or multiple cameras
mounted on the agent’s body [17]. VO has been a well studied
topic in computer vision and robotics since the 1980s due to
its versatility and practicality. In the simplest setting, VO does
not require sensors other than cameras, which are inexpensive,
widely accessible and low power consumption [7]. Therefore,
VO has been applied in a wide range of applications includ-
ing automobile, underwater and space robotics, healthcare,
wearable computing, industrial manufacturing, and gaming &
virtual reality [15]. Particularly in robotics and automobiles,
VO plays a crucial role in vehicle navigation, driver assistance,
and control & guidance of unmanned vehicle [15].

The idea to estimate the egomotion of a robot solely based
on image sequences was initially pioneered by Moravec (1980)
[11] and Matthies (1989) [10], and the term Visual Odometry
was first coined by Nistér et al. in 2004 [13]. Since then,
many different kinds of VO algorithms have been developed
and applied in studies to estimate the 6 degree-of-freedom
(DOF) poses of a moving camera. In the early studies of
VO, salient and repeatable image features were first detected
on the images, and the 3D positions of the features were
measured by triangulating them into a 3D coordinate system.
The motion of the robot was then computed as a rigid body
transformation to align the triangulated 3D points seen at two

consecutive robot positions [17]. This kind of VO algorithms
can be categorized as a feature-based method because image
features are explicitly extracted and matched (or tracked)
across images. Another category of VO algorithms is called
appearance-based method, where the intensity information of
image pixels from either the whole image or several regions
of the image are utilized to estimate egomotion (e.g. [16]).
Following the same classification scheme, a third category
of VO algorithms, so called hybrid algorithms, is developed
to take the advantages of both feature-based and appearance-
based methods (e.g. [4]).

In another classification scheme, VO algorithms can be
characterized according to the type of camera(s) employed
by the system. In the early years of VO development, most
of the studies employed stereo camera systems to capture
images, and thus, the algorithms that use stereo images input
are classified as stereo VO algorithms. In contrast, monocular
VO algorithms employ only a single camera (either perspective
or omnidirectional) to perform pose estimation (e.g. [16]).
However, the motion estimated by a monocular VO algorithm
can only be recovered up to a scale factor because only
bearing information is available. Further scale information
(e.g. measured by a range sensor) would be required in order
to recover the absolute scale of the vehicle motion [17].

In this study, a feature-based stereo VO pipeline, shown
in Fig. 1, is implemented by the team to gain experience
on processing stereo images and performing state estimation
using egomotion. The state to be estimated is the 6 DOF poses
of the stereo camera mounted on a moving vehicle expressed
in an inertial frame. The implementation is a frame-to-frame
VO operated in an off-line fashion, where no time constraint is
considered. The datasets used are extracted from the publicly
available KITTI Vision Benchmark Suite [6], and only the
synced and rectified grey-scale stereo images are used. The rest
of this report is organized as follows: after the introduction, a
literature review is presented in Section II. Section III provides
the methodology and the implementation details of the VO
pipeline, followed by Section IV in which experimental results
are presented and discussed. Lessons learned and future work
are included in Section V.

II. LITERATURE REVIEW

Although there exist a large number of VO algorithms
proposed in literature, a general pipeline for feature-based



Fig. 1. The implemented stereo visual odometry pipeline. The pre-processing stage has been conducted by the KITTI Vision Benchmark Suite. This study
focuses on the implementation of the Data Association and Pose Estimation stages.

stereo VO can be concluded as Fig. 1. This pipeline can
be further divided into three stages: image pre-processing,
data association, and pose estimation. The variations between
different algorithms often appear at the data association stage
and the pose estimation stage whereas the pre-processing is
simply to de-warp and rectify the images so that an ideal stereo
geometry is achieved for the images captured at the same time
instant [2].

In the data association stage, two factors make algo-
rithms variant. The first factor refers to the choice of feature
detection-description techniques, and the second is the selec-
tion of feature matching mechanism [15].

In Moravec’s first VO pipeline [11], he introduced one of
the earliest feature detectors, the Moravec corner detector,
to detect image features. Since then, many feature detection-
description techniques were invented and applied in VO ap-
plications. For instances, Harris corner detector was used by
Cheng et al. in [3], SIFT was adopted by Tardif et al. in
[18], and SURF was employed by Lee et al. in [8]. The
different choice of feature detection-description techniques
can considerably influence the robustness and computational
effort of a VO algorithm. In this project, the SURF feature
detector is used because of its high robustness and relatively
fast computational speed [19].

Regarding the feature matching mechanism, there exist two
main approaches to find feature correspondences between
timesteps. The first approach is to identify a set of image
features in the current frame and track them in the following
images using local search techniques (e.g. [3]). The second
method is to independently detect salient and repeatable image
features in all images and match them based on a similarity
metric such as normalized cross correlation (NCC) or sum of
squared difference (SSD) [17]. In this study, the latter method
is employed, and the implementation details are presented in
Section III.

Once the data association is finished, there are three broad
categories of methods that can be applied to estimate the
camera motion, namely, 2D-to-2D, 3D-to-2D and 3D-to-3D
methods [15]. The 2D-to-2D methods involve the process of
computing the essential matrix based on at least five 2D-to-2D
feature correspondences. The camera rotation and translation
between the previous and current timesteps can be recovered

from the essential matrix [17]. Nister in [12] proposed a five-
point algorithm which can be used to estimate the relative
motion up to an unknown scale factor. For 3D-to-2D methods,
the term 3D refers to the 3D positions of the image features
from the previous frame, while the term 2D refers to the
2D image plane coordinates of the image features in the
current frame [17]. The features from the previous frame (3D)
are reprojected to the image plane of current frame, and an
estimator is designed to find a transformation that minimizes
the image reprojection error (e.g. [13]). In contrast, the 3D-
to-3D methods project both previous and current features into
the 3D space. A point cloud alignment problem is then set up
to compute the transformation which minimizes the sum of
3D position errors of the feature points (e.g. [3]).

In this study, the SURF feature detector and descriptor are
used to determine intra-frame and inter-frame feature matches
by employing the SSD similarity metric. A 3D-to-3D point-
cloud alignment method is then used to compute the relative
transformation between the previous frame and the current
frame. The full trajectory of the moving agent (i.e. a car in
this case) can then be estimated by compounding the frame-
to-frame transformations. It is assumed that the cameras are
rigidly mounted on the moving vehicle, and the whole system
performs as a rigid body. For every image sequence (i.e. every
independent dataset), the first frame is set to be the stationary
world frame, and the trajectory of the movement is expressed
with respect to this inertial frame. The following section
(Section III) explains the methodology and implementation
details of this project.

III. METHODOLOGY AND IMPLEMENTATION DETAILS

In this study, we have implemented the VO pipeline shown
in Fig. 1. The pre-processing stage was carried out by the
KITTI Vision Benchmark Suite (KITTI) [6], and the imple-
mentation of rest of the pipeline is separated into two stages.
In this section, we first describe the implementation details of
the data association stage, followed by elaborating the methods
used to perform pose estimation.

All of the datasets are extracted from the KITTI’s database
with an emphasis on the raw data under the City data cate-
gory. The calibration parameters and groundtruth values are
directly extracted from KITTI to facilitate and evaluate our



VO implementation. All of our codes are written and run in
MATLAB on a PC installed with a Windows 10 system.

A. Data Association

There are three steps involved in the data association stage:
feature detection, feature-based stereo matching, and between-
frame feature matching. For feature detection, we detect salient
image features independently on every image by using the
open-source package, OpenSURF. During the feature detection
process, every image is divided into three non-overlapping
portions (i.e. left, center and right portions as shown in Fig. 2)
to detect nonrotational-irrelevant image features. A dynamic
threshold is used to ensure that every portion of the image
(375×414 pixels per portion) contains at least 500 SURF
features. The reasons to horizontally divide the images into
three portions are mainly due to three considerations. First, by
detecting features independently within each portion, we can
ensure that image features are evenly distributed over every
image. Second, due to the fact that the dynamic range of the
camera is narrower than the radiance range of the outdoor
environment, we can often observe either over-exposure in
the sky, or under-exposure on the ground. By horizontally
segmenting an image, we can ensure that every portion of
the image contains both the sky and ground regions, so that
salient features can be successfully detected. Third, since we
are using a RANSAC based outlier rejection scheme in the
pose estimation stage, three feature points would be required
to compute a set of valid rotation and translation between two
consecutive frames. By dividing an image into three portions,
we force the first one third of the RANSAC trails to draw
one point from each of the portion. In this way, we can
guarantee that the selected inlier set after the first one third
of the RANSAC trails is generated based on a transformation
which has taken all image regions into account.

After detecting features on both the left and right images
captured at the same timestep, we perform stereo matching by
employing the SSD similarity metric on the 64-dimensional
feature descriptors [19]. Because the stereo cameras are well
calibrated, the stereo matching is done strictly along the
epipolar line with only four pixels of offset buffer above
and below it. This not only increases the matching accuracy,
but also significantly improves the computational efficiency as
compared to a brute-force matching [3].

In addition to the standard stereo matching process, we have
also applied the following criteria to further filter the detected
features. First, we remove the feature pairs that have a disparity
value less than 7 pixels. This is approximately equal to a
distance of 55 m away from the camera frame. The reason to
remove these features is because objects that are far away from
the camera are usually accompanied with large uncertainties
[1]. Second, we remove the feature correspondences that have
a disparity value more than 77 pixels (i.e. within 5 m of the
camera). This is because we have observed that feature pairs
with large disparity values are often mismatches. In this way,
we can repeat the same procedure for every pair of stereo

(a)

(b)

Fig. 2. (a) Images are divided into three portions, left, center and right, to
detect SURF features. (b) Between-frame feature matching is performed in a
circular fashion following a similar method proposed by Geiger et al. in [5]

images, and we will obtain one set of within-frame feature
correspondences for every timestep.

To perform between-frame feature matching, we adopt a
matching scheme that is similar to the one proposed by Geiger
et al. in [5]. The overall matching mechanism is done in
a circular fashion between the left and right images over
the current and previous timesteps (Fig. 2b). For every two
consecutive frames (i.e. current and previous frames), we start
from all feature candidates in the current left image to find
the best match in the previous left image by using the SSD
metric. Since we have already found the within-frame feature
correspondences in the stereo matching step, we can quickly
find the corresponding feature in the previous right image. We
then find the best matches between the previous right image
and the current right image. A ‘circle match’ gets accepted,
if the between-frame correspondence for the previous right
and current right images coincides with the within-frame
correspondence for the current timestep (i.e. current left and
right). After identifying all the ‘circle matches’, a threshold is
applied to only retain the matches that possess a small SSD.

In additional to the between-frame feature matching method
stated above, we also apply a dynamic SSD threshold to ensure
that each of the left, center and right portions of the images
contains at least 40 between-frame feature matches. We have
seen noticeable improvement in terms of trajectory accuracy
by performing this to avoid nonexistence of feature in an image
portion.

By performing the above procedures, we are able to obtain
one set of between-frame feature correspondences for every
two consecutive timesteps. We then use these between-frame
feature correspondences to compute the egomotion of the
vehicle in the pose estimation stage.



B. Pose Estimation
At this point, we have obtained the between-frame feature

correspondences for every two consecutive timesteps. Before
providing details about the pose estimation, we first define
our midpoint stereo camera model as (1), and inverse camera
model as (2), where K is the stereo camera intrinsic matrix.
We assume the stereo camera as a pair of perfect pinhole
cameras with focal lengths fu, fv and principal points (cu,
cv), separated by a fixed and known baseline, l. We define the
homogeneous coordinate of a 3D landmark Pj , expressed in a
vehicle frame, F−→v , to be p̃

pjv
v = [(p
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Problem Setup. Having defined the camera models, we then
move on to the pose estimation stage to compute the poses of
the moving vehicle. In this study, it is assumed that the camera
is rigidly mounted on the vehicle, and thus, the trajectory of
vehicle motion is equivalent to the trajectory of camera motion.

The egomotion of the vehicle can be estimated by setting
up a weighted-least-squares point cloud alignment problem.
The same problem setup is used for every two consecutive
timesteps, hence, a sequence of incremental motions can be
obtained. By compounding all of the frame-to-frame pose
estimates, a trajectory of the vehicle movement can finally be
produced. In this section, we call the kth and (k-1)th timesteps
as current and previous timesteps, respectively.

The point-cloud alignment problem setup is illustrated in
Fig. 3, and we define the following quantities:

TVkVk−1 : 4× 4 transformation from F−→Vk−1 to F−→Vk ;

CVkVk−1 : 3× 3 rotation matrix from F−→Vk−1 to F−→Vk ;

r
VkVk−1

Vk−1
: 3× 1 translation of Vk−1 to Vk expressed in F−→Vk−1 ;

p
PjVk−1

Vk−1
: 3× 1 projected coordinate based on yj

Vk−1
in F−→Vk−1 ;

p
PjVk

Vk
: 3× 1 projected coordinate based on yj

Vk
in F−→Vk ;

yj
Vk

: 4× 1 stereo measurement of Pj at Vk;

yj
Vk−1

: 4× 1 stereo measurement of Pj at Vk−1.

In this setup, we want to estimate the rotation matrix, CVkVk−1
,

and translation vector, r
VkVk−1

Vk−1
by using the measurements

of between-frame feature correspondences that we have iden-
tified in the data association stage. For the measurements,
we have M pairs of between-frame feature correspondences,
(yj

Vk
,yj

Vk−1
), where j = 1, . . . ,M . Each pair is a correlated

set of measurements with respect to the same point, Pj at
either the current or previous timestep. We assume all the mea-
surements are corrupted by some zero-mean Gaussian noise. In
order to construct a 3D-to-3D point cloud alignment problem,
we project the image plane measurement, (yj

Vk
,yj

Vk−1
), into

the 3D Euclidean space through the inverse camera model
shown in (2). The projected coordinates based on (yj

Vk
,yj

Vk−1
)

Fig. 3. Frame diagram of the point cloud alignment problem

are, respectively, (pPjVk

Vk
,p

PjVk−1

Vk−1
). In this way, we can project

all M correspondences into the 3D space, and as a result, we
obtain two point clouds associated with the same set of 3D
landmarks.

After obtaining the two point clouds for both the current
and previous frames, there are two steps remaining to acquire
the final pose estimate. The first step refers to an Outlier
Rejection step, and the second is the Nonlinear Numerical
Solution step. In Outlier Rejection, we accomplish two tasks:
1. Generate an initial guess of the pose estimate based on
a scalar-weighted solution; and, 2. Generate an inlier set
which is used in the nonlinear numerical (i.e. matrix-weighted)
solution. Due to space limitations in this document, more
emphasis is put on the matrix-weighted solution, and only the
key steps that are required to implement the scalar-weighted
solution are included. An in-depth explanation on the scalar-
weighted solution, including problem setup, cost definition and
equation derivation can be found in [2]. In order to keep the
notation concise, we will use the subscript b and a to represent
the current and previous timesteps, respectively.

Outlier Rejection and Scalar-weighted Solution. The
RANSAC based Outlier Rejection step is performed following
the algorithm depicted in Table I. The process given in Table
I is performed repeatedly until a user-defined number of trials
have been conducted. During each trail, we first randomly
pick three matched correspondences (i.e. three from one point
cloud matched to three from the other) and determine their
corresponding centroids. The Wba matrix is then computed
by using (3):

Wba =
1∑3

j=1 w
j

3∑
j=1

wj (pj
b − pb)(p

j
a − pa)T , (3)

where, wj is the scalar weight associated with the jth corre-
spondence (set to 1 in our case), with j ∈ [1, 3]; pa and pb are
the centroids of the three selected correspondences from point
cloud a and b, respectively; and, pj

a and pj
b are the jth selected

correspondences from point cloud a and b, respectively. After
that, we first carry out a singular-value decomposition on the
Wba matrix:

VSUT = Wba, (4)



TABLE I
PSEUDOCODE OF THE RANSAC BASED OUTLIER REJECTION STEP

and then compute the unknown rotation between these three
correspondences as:

Cba = V

1 0 0
0 1 0
0 0 det U det V

UT (5)

and translation as:

rbaa = −CT
bapb + pa. (6)

After determining the rotation and translation associated
with the three selected correspondences, we then apply this
set of Cba and rbaa to all the remaining points, and classify
them as either inlier or outlier based on their residual error.
That is:

Jj =
1

2
wj(pj

b−Cba(pj
a−rbaa ))T (pj

b−Cba(pj
a−rbaa )) 6 Jthresh,

(7)
where, Jthresh is the user-defined threshold used to classify
whether a point is inlier or outlier; and wj is the scalar weight
associated with the jth correspondence (set to 1 in our case),
with j ∈ [1,M ].

After all the trails are done, we obtain a set of inliers,
{inliersa, inliersb}, and its corresponding {Cba, rbaa }. We
use this set of {Cba, rbaa } as our initial guess for the pose
estimate and pass the inlier set into the Nonlinear Numerical
solution step to compute our final estimate.

It is worthwhile to reiterate that we force the first one third
of the RANSAC trails to draw one point from each of the
left, center and right portions of the image. In this way, we
can guarantee that the selected inlier set after the first one third
of the trails is generated based on a transformation which has
taken all regions of the image into account.

Matrix-weighted Point Cloud Alignment. In stereo vision,
points that are far away from the camera frame have more
uncertainty than those that are close. Moreover, measurements
made by stereo cameras have greater noise in the depth
direction than the lateral directions (i.e. noise is not isotropic)
[1]. Since we have assigned a scalar weight of 1.0 to every
feature in the scalar-weighted solution, we have not taken

any of these effects into account which will lead to sub-
optimal pose estimates. Therefore, we need to take the point
uncertainty into account during the pose estimation process in
order to obtain an optimal solution. To do that, we assume
the camera observation, y, are corrupted by some zero-mean
Gaussian sensor noise, n:

y = f(p) + n, n ∼ N (0, R), (8)

where, f(·) is the forward camera model defined in (1); and
R is the sensor noise covariance. When we project an image
feature back through the inverse camera model, we will have:

p̂ = g(y) = g(f(p) + n) ≈ p + G n, G =
∂g

∂y

∣∣∣∣
y

, (9)

where, p̂ is the estimated landmark position; p is the true
landmark position; g(·) is the inverse camera model defined
in (2), and G is the Jacobian of the inverse camera model with
respect to the camera measurement. In this way, the estimate
of the landmark behaves as:

p̂ ∼ N (p,G R GT ), (10)

and the Jacobian of the inverse camera model is defined as:

G =
l

(d)2

 −ur + cu 0 ul − cu 0
−( vl+vr

2
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2
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2
− cv 1

2
d

−fu 0 fu 0
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where, d = (ul − ur) is the disparity value in pixels; and
we have omitted the fraction between fu and fv to keep the
equation concise because the camera in our problem have the
same focal length in both horizontal and vertical directions.

By incorporating the matrix point uncertainty, the objective
function is defined as:

J =
1

2

M∑
j=1

(
pj
b −Cba(pj

a − rbaa )
)T

Σj((pj
b −Cba(pj

a − rbaa )),

(12)
Σj = (Gj

bR
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j
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where, Σj is the 3×3 point uncertainty associated with the jth

landmark; Gj
a and Gj

b are the 3×4 Jacobians of inverse camera
model with f(pj

a) and f(pj
b) as operating points, respectively;

Cba is the 3 × 3 rotation matrix from frame a to frame
b; rbaa is the 3 × 1 translation vector from frame a to b,
expressed in frame a; and, Rj

a and Rj
b are the 4 × 4 image

plane uncertainties of the jth feature point in frame a and
b, respectively. Note that in this study, we have assumed an
image plane sensor noise of 2 pixels to all the detected feature
points (i.e. a variance of 4 [pixel2]) in both the horizontal and
vertical image plane directions.

As shown in (12), the objective function includes a matrix
weight, Σ, which means that we cannot obtain the optimal
solution in closed form. In this case, the pose estimation
problem must be solved iteratively, and we will use the Gauss-
Newton method to solve the system. In order to minimize the
objective function by iteratively optimizing Cba and rbaa with
the initial guess obtained from the scalar-weighted solution,
we first introduce the following perturbation terms:

rbaa = r̄baa +ε, Cba = e−φ
∧
C̄ba ≈ (1−φ∧)C̄ba, ξ =

[
ε
φ

]
, (15)



where, the (3 × 1) ε and the (3 × 1) φ are the perturbations
for translation and rotation, respectively; C̄ba and r̄baa are
the solutions for rotation and translation from the previous
iteration, respectively; e(·) is the matrix exponential map
operator; and (·)∧ is the skew-symmetric operator, which is
defined as:

φ∧ =

φ1

φ2

φ3

∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 . (16)

After inserting the perturbations into the objective function
and defining some intermediate terms, we can express the
objective function as:

J ≈ 1

2

M∑
j=1

(ēj + Ej ξ)T Σj (ēj + Ej ξ), (17)

ēj = pj
b − C̄ba(pj

a − r̄baa ), Ej =
[
C̄ba − (C̄ba (pj

a − r̄baa ))∧
]
.

(18)
This is exactly quadratic in the perturbations (after dropping
the product of two small terms). To find the optimal update,
ξ∗, we can take the derivative of (17) with respect to the
perturbations and set it to zero:

∂J

∂ξT
=

M∑
j=1

EjT Σj(ēj + Ej ξ) (19)

(
M∑
j=1

EjT ΣjEj

)
ξ∗ = −

M∑
j=1

EjT Σj ēj , (20)

where, ξ∗ is the 6 × 1 optimal perturbations to update the
current estimates of rotation and translation:

r̄baa ← r̄baa + ε∗, C̄ba ← e−φ
∗∧

C̄ba, ξ∗ =

[
ε∗

φ∗

]
. (21)

We then repeat the above process until convergence (i.e. ξ∗ is
sufficiently small). At this point, we have finished implement-
ing the entire VO pipeline as stated in Fig. 1, and acquired
a whole sequence of pose changes between two consecutive
camera frames, {(rv2v1v1 , Cv2v1), . . . , (r

vkvk−1
vk−1 , Cvkvk−1

)}.
Note that we have used the subscript 1 to denote the initial
timestep which complies with the indexing scheme in MAT-
LAB. To estimate the pose of the vehicle at the kth timestep
(k ∈ [1, N ], where N is the total number of frames), we
recursively compound the frame-to-frame estimates to produce
an estimate relative to the stationary inertial frame (i.e. the first
frame of the entire sequence):

Cvkv1 = Cvkvk−1 Cvk−1v1 ; rvkv1v1 = CT
vk−1v1r

vkvk−1
vk−1 + r

vk−1v1
v1

(22)
By doing so, we are able to recover the entire trajectory of
the vehicle motion.

C. Robust M-Estimation

To further improve our estimator, one can incorporate a
robust cost function in the matrix-weighted solution to further
reduce the influence of outliers. As mentioned by Kaess et
al., even though the RANSAC technique can effectively filter
majority of the outliers, its performance is sensitive to the
user-defined threshold, and poor performance may be observed
in nearly degenerate data (e.g. bad lighting condition, motion
blur) [7]. As demonstrated by MacTavish and Barfoot in

[9], the robust M-estimation technique can also be used to
effectively increase the robustness of the estimator.

In this study, we use the Geman-McClure (G-M) robust cost
function to modify the shape of the original sum-of-squared-
error objective function (17). The G-M function used in this
study is one member of the G-M family, which has the form:

ρ(u) =
1

2

u2

1 + u2
. (23)

To incorporate with our original objective function (17), we
define the following:

uj(ψ
j) =

√
ψjTΣjψj , ψj(ξ) = ēj + Ejξ, (24)

where, Σj , ēj , Ej , and ξ follow the same definitions as above.
As a result, the original cost is simply, J = 1

2

∑M
j=1 u

2
j ,

and the new objective function, J
′
(ξ), can be obtained by

substituting (24) into (23). The gradient of the new objective
function is determined by using the chain rule:

∂J
′

∂ξ
=

M∑
j=1

αj
∂ρ

∂uj

∂uj

∂ψj

∂ψj

∂ξ
,

∂ρ

∂uj
=

u

(1 + u2)2
, (25a)

∂uj

∂ψj
=

1

uj
ψjTΣj ,

∂ψj

∂ξ
= Ej , (25b)

where, we have set αj to 1. By taking the Jacobian of the new
objective function and setting to zero, we will have:

∂J
′

∂ξT
=

M∑
j=1

EjTYj(ē
j + Ejξ), (26)

Yj =
1(

1 + uj(ξop)2
)2 Σj , (27)

(
M∑
j=1

EjT YjE
j

)
ξ∗ = −

M∑
j=1

EjT Yj ē
j , (28)

where, ξop is the optimal update from the previous Gauss-
Newton iteration. In this case, we solve the original least-
squares problem at each iteration, but with a modified covari-
ance matrix that updates as ξop updates. This is referred to as
iteratively re-weighted least squares in literature [9].

D. Uncertainty Propagation
In order to measure the uncertainty associated with the kth

pose estimate, we need to compound the uncertainty associated
with each incremental motion from the first timestep up to the
kth timestep. To simplify the notation, we use transformation
matrix in this section instead of treating rotation and trans-
lation separately, where the estimated transformation matrix
between two constitutive frames is defined as:

T̄vkvk−1 =

[
C̄vkvk−1 −C̄vkvk−1 r̄

vkvk−1
vk−1

0T 1

]
. (29)

Since we have set the first frame as our inertial frame, we
assume zero uncertainty when k = 1 (i.e. P̂v1 = 0). For k ∈
[2, N ], we have the pose uncertainty defined as (30a) if (20) is
used (i.e. original objective function is employed), or as (30b)
if (28) is used (i.e. robust cost function is employed).

P̂vk =

(
M∑
j=1

EjT ΣjEj

)−1

vk

+ T̄vkvk−1P̂vk−1 T̄
T
vkvk−1

, (30a)



Fig. 4. Error plots of the VO implementation on the 2011 09 26 drive 0059 dataset. Errors are shown with respect to the camera frame, where the camera
x-axis coincides with the vehicle pitch-axis, camera y-axis coincides with the vehicle yaw-axis, and the camera z-axis coincides with the vehicle roll-axis.

Fig. 5. Estimated vs true trajectory of the 2011 09 26 drive 0059 dataset.

TABLE II
ENDING-POINT TRANSLATIONAL AND ROTATIONAL ERRORS OVER THE

TOTAL DISTANCE TRAVELLED ON SEVERAL KITTI DATASETS

P̂vk =

(
M∑
j=1

EjT YjE
j

)−1

vk

+ T̄vkvk−1P̂vk−1 T̄
T
vkvk−1

, (30b)

where, T̄vkvk−1 = Ad(T̄vkvk−1) is the 6×6 adjoint form of the
estimated transformation matrix, which is defined as:

T̄vkvk−1 =

[
C̄vkvk−1 (−C̄vkvk−1 r̄

vkvk−1
vk−1 )∧ C̄vkvk−1

0 C̄vkvk−1

]
. (31)

Therefore, the uncertainty associated with the pose estimate at
each timestep can be computed.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the results of our VO im-
plementation experimented on several KITTI datasets. The
overall performance reveals the fact that further improvement
is required. The error plots and the estimated trajectory plot
regarding the 2011 09 26 drive 0059 dataset are illustrated in
Fig. 4 and Fig. 5. The ending-point estimation errors on several
other datasets are summarized in Table II.

In Fig. 4, the translational and rotational errors of the pose
estimate at the kth timestep is computed according to:

δrk =

δrx,kδry,k
δrz,k

 = r
vki
i − r̄

vki
i ; δθ∧k =

δθx,kδθy,k
δθz,k

∧= 1−CvkiC̄
T
vki,

(32)
where, letter i denotes the stationary inertial frame (i.e. the
first frame of the sequence); C̄vki and r̄vkii are the estimated
rotation and translation at the kth timestep, respectively; Cvki

and rvkii are the groundtruth rotation and translation; and (·)∧
is the skew-symmetric operator defined in (16).

As can be observed in Fig. 4, the estimation errors and
uncertainty envelope grow without bounds as the vehicle
moves further. This agrees with our expectation that VO
suffers from unbounded accumulation of drift error over time.
According to Olson et al. [14], the increasing orientation errors
will lead to a super-linear growth of drift error with distance
travelled. The small estimation errors associated with each
timestep will compound together, and eventually result in a
large drift in the trajectory estimation.

In this dataset (2011 09 26 drive 0059), majority of the
estimation errors fall within the three standard-deviation un-
certainty envelope. This means that our estimator can be
considered as consistent. However, we have also observed that
this consistency may not always be true in some other datasets.

As shown in Table II, the translational and rotational errors
from our VO implementation are greater than 1.5% and 0.0034



[rad/m] on the experimented datasets. State-of-the-art VO
algorithms often return an ending-point translational error of
less than 1%, and a rotational error that is about 5 to 10 times
smaller than our estimates. In addition, we can observe that
large rotational error is correlated to large translational error
in our case. This reveals the fact that further improvement is
required to increase the performance of our VO algorithm.

In general, our VO implementation has better performance
when the vehicle motion is relatively straight and smooth
(e.g. smooth curve), while poor performance is produced
when there exists large turns in the movement trajectory. Bad
performance can also be observed when the vehicle undergoes
frequent speed changes. Moreover, it has been found that
the quality of the between-frame feature matches has crucial
impact on the estimation accuracy. Several mismatches in the
early stage of the image sequence may orientate the vehicle to
a totally off direction. This kind of mismatches may affect the
pose estimation stage if the vehicle is moving relatively slow
while there are moving objects with strong image gradients in
the scene. For instance, this kind of situation can happen when
the vehicle is just about to start moving (e.g. after waiting for
traffic light) while there are cyclists or pedestrians who are also
slowly moving in the environment. In addition, objects like
trees, grass and shadows which possess strong image gradients
are often big sources of error in the data association stage.

V. LESSONS LEARNED AND FUTURE WORK

Overall, this project provides a good opportunity for the
team to gain experience on processing stereo images and
estimating vehicle egomotion through implementing the clas-
sic feature based VO pipeline. During this process, we have
learned that there exist many factors which can affect the
performance of a VO algorithm. In the data association stage,
moving objects in a dynamic scene are usually big sources
of errors which can lead to feature mismatches. The influence
of these mismatches can accumulate with time and eventually
cause inconsistency in the estimator. In addition, phenomena
like motion blur and variation in lighting condition between
image frames are big challenges not only for feature matching,
but also feature detection and description. The detected salient
features in one image frame can suddenly become unavailable
in the next frame due to motion blur and illumination changes.
Such effects can further result in detection and selection of
many distant features. This is because the image plane motion
and variation in pixel intensity for far-away features are usually
small as compared to those features that are close. Due to the
fact that far-away features possess more uncertainty, employ-
ing too many far-away landmarks can potentially introduce
more errors into the estimation.

For the pose estimation stage, we have found that computing
the vehicle transformation based on image features that are
widely distributed on the image plane can lead to noticeable
improvement in terms of trajectory accuracy. If rotation and
translation are estimated according to features that are ex-
tracted from the same image region, it can lead to a pose
estimate that is biased towards that specific local image patch.

Moreover, we have noticed that there exists a certain level
of randomness in our VO implementation even if the same
initial condition is applied. This may be due to the inherent
randomness in the RANSAC algorithm. Regarding the robust
M-estimation, we have observed that the results generated by
the M-estimation is smoother than the ones produced by using
the original sum-of-squares objective function. This may be
due to the weights assigned to each of the landmark points
are more uniform in the M-estimation.

Future work for this project can be carried out by employing
a 3D-to-2D pose estimation method, where the image plane
reprojection error will be minimized. A sliding-window tech-
nique can also be applied to take information from multiple
frames into account during each pose estimation process.
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