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Preliminary

For a more thorough treatment on Lie theory for state estimation in robotics, one may refer to:

• Barfoot’s book: State Estimation For Robotics

• Chirikjian’s book: Stochastic models, information theory, and Lie groups (Volume 1 & 2)

• Sola et al., (2018) A micro Lie theory for state estimation in robotics

1 Perturbation Applied to a Rotation on SO(3)

For a rotation in 3D, perturbations can be applied either on the Lie Algebra (i.e., the tangential
space) or directly on the Special Orthogonal Group SO(3) (i.e., on the manifold).

A more general discussion on the perturbation options is presented in Section 7.3.1 in [1]. Refer-
ring to [1], there are different perturbation options, which are left, middle and right perturbations.
In this document, we will discuss the right and middle perturbations.

1.1 Perturbation on Lie Group (Right Perturbation)

For perturbation applied directly on the SO(3) manifold, we let subscript a denote the original
rotation and subscript b denote the perturbed rotation. We let exp (ϕ∧

m) be a right perturbation
applied to rotation matrix Ra , and we have

exp (θ∧b ) = Rb = Ra exp (ϕ
∧
m) = exp (θ∧a ) exp (ϕ

∧
m), θb ,θa , ϕm ∈ R3, (1)

where exp (·) is the matrix exponential map; (·)∧ is the skewness operator that returns the corre-
sponding skew-symmetric matrix of a vector; and θa is the corresponding angle-axis representation
of the rotation matrix Ra.

If we want to recover the angle-axis vector, θb (i.e., the tangential vector in the tangential
space), of Rb, we use the matrix logarithm map as

θb = ln (exp (θ∧a ) exp (ϕ
∧
m))

∨

≈ θa + Jr(θa)
−1ϕm,

(2)

where Jr(·) is the right jacobian of SO(3) given as (see [1, Section 7.1] and [2]):
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Jr(ψ) =
sinψ

ψ
I3×3 + (1− sinψ

ψ
)aaT − 1− cosψ

ψ
a∧ (3a)

≡ I3×3 −
1− cosψ

ψ2
ψ∧ +

ψ − sinψ

ψ3
(ψ∧)2 (3b)

≈ I3×3 −
1

2
ψ∧, (3c)

where ψ = ∥ψ∥ is the angle of rotation with a unit of [rad]; a = ψ
ψ is a 3 × 1 vector representing

the axis of rotation; I3×3 is the 3× 3 identity matrix.
Note that in the actual implementation, one should be aware of the possible numerical insta-

bility due to the fact that ψ and its power in the denominator can be a quite small value (the
perturbation is often associated with a small angle). Therefore, the approximation (3c) should be
used when ψ (if (3a) is adopted) or ψ3 (if (3b) is adopted) is smaller than the numerical limit of a
computer to avoid dividing by a value close to zero.

The inverse of the right Jacobian is then given as (see [1, Section 7.1] and [2]):
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−1 =

ψ

2
cot

ψ

2
I3×3 +

(
1− ψ

2
cot

ψ

2

)
aaT +

ψ

2
a∧ (4a)

≡ I3×3 +
1

2
ψ∧ +

(
1

ψ2
+

1 + cosψ

2ψ sinψ

)
(ψ∧)2 (4b)

≈ I3×3 +
1

2
ψ∧, (4c)

1.2 Perturbation on Lie Algebra (Middle Perturbation)

For a perturbation applied on Lie Algebra, so(3), i.e., the tangential space of SO(3), we let ϕt

be an angle-axis representation of a perturbation on so(3), and we use subscript c to denote the
original rotation and subscript d to mean the perturbed rotation. Thus,

exp (θ∧d ) = Rd = exp
(
(θc + ϕt)

∧) ≡ exp
(
θ∧c + ϕ∧

t

)
≈ exp (θ∧c ) exp

(
(Jr(θc)ϕt)

∧)
= Rc exp

(
((Jr(θc)ϕt)

∧)
)
,

(5)

where Jr(θc) is the right jacobian evaluated at θc by using (3). Notice that the perturbation is
introduced in the vector space, where ϕt ∈ R3.

To recover θd from Rd, we have

θd = ln (Rd)
∨ = ln

(
exp (θc + ϕt)

∧)
)∨

= θc + ϕt

(6)

Therefore, depending on the perturbation scheme used, the form of the recovered angle-axis
representation for the perturbed rotation would be slightly different.
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In an optimization problem, if Ra or Rc represents an operating point of the rotation, and ϕm

or ϕt represents the corresponding update, respectively. Then, if a perturbation is applied through
right perturbation, the update to Ra should follow (1), and one can use (2) to recover the angle-axis
representation of the rotation (if a vector form is required). In contrast, if a middle perturbation
is to be applied, then one would obtain a perturbation vector ϕt from an optimization algorithm
and apply the perturbation to θc through (6), and the perturbed rotation matrix, Rd, is obtained
by applying the exponential map over θ∧d .
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