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Preliminary
In this set of notes, we follow a similar notation scheme as the one used in [1]. This document

never means to be rigorous in terms of narration, but the key idea is to keep a record of the
derivation of the Jacobian for the PSIMU measurement model.

1 Notation

1.1 General Notation
Symbol Description

R 3 x 3 rotation matrix on SO(3)

ϕ or ψ 3 x 1 axis-angle representation of rotation

v 3 x 1 translational velocity vector

(·)∧ skew-symmetric operator,

a∧ =


a1
a2
a3


∧

=


0 −a3 a2
a3 0 −a1
−a2 a1 0


3×3

∈ so(3)

exp(·) matrix exponential map, where, R = exp(ϕ∧)

1.2 Frame-specific Notation

Symbol Description

Rivs rotation from the starting vehicle frame among a sliding window to inertial frame

vvsi
i translational velocity of the starting vehicle frame among a sliding window with

respect to inertial frame, expressed in inertial frame

v
v f i
i velocity of the final vehicle frame among a sliding window with respect to inertial

frame, expressed in inertial frame

γ
v f vs
vs

velocity difference of the final frame with respect to the starting frame, expressed in
the starting frame among a sliding window. It is defined as

γ
v f vs
vs
B RT

ivs
(v

v f i
i − vvsi

i − gi)

y
v f vs
vs

measurement of velocity difference provided by the PSIMU model;

y
v f vs
vs
= γ

v f vs
vs
, ideally. However, equality does not hold due to noise and biases.

gi gravitational acceleration in inertial frame. Assumed to be constant as [0, 0,−9.8x]T

∆t time span of a sliding window, i.e., the wall-clock time of the data sequence
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2 Jacobian of the PSIMU measurement model

In the pseudo-IMU (PSIMU) setup, the model measurement is obtained by sending a sequence
(i.e., a sliding window) of body-frame IMU readings into a convolutional neural network (CNN).
The CNN outputs a 3-vector representing the velocity difference between the last and first timesteps
of the sequence, expressed in the vehicle frame at the first timestep. For a given sliding window,
we denote the measurement as y

v f vs
vs

, which is a 3 × 1 vector in R3.
Ideally, we have the equation

y
v f vs
vs
= γ

v f vs
vs
= RT

ivs
(v

v f i
i − vvsi

i − gi ∆t), (1)

where the definitions of terms are given in Section 1.2; and Rivs , v
v f i
i , and vvsi

i are vehicle state that
we aim to estimate. Nonetheless, the first equality does not hold in practice due to the existence
of noises and biases. Thus, we can define an error term for each given sliding window as

evs = y
v f vs
vs
− RT

ivs
(v

v f i
i − vvsi

i − gi ∆t), (2)

where evs is a 3× 1 vector representing the error of the velocity difference, expressed in the starting
vehicle frame among the sliding window.

We now want to take the derivative of evs with respect to the vehicle state involved in Eq. (2).
There are several ways to perform this task, where each achieves similar or the same results. In
this note, we show two ways in the following sections that achieve the same result.

2.1 Taking Derivative w.r.t. Vehicle State Separately

The derivatives w.r.t. the velocity terms are more convenient, thus we will start with them.

For v
v f i
i , we have

∂evs

∂v
v f i
i

T =
∂y

v f vs
vs

∂v
v f i
i

T −

∂RT
ivs

(v
v f i
i − vvsi

i − gi ∆t)

∂v
v f i
i

T (3a)

= 03×3 − RT
ivs

∂v
v f i
i

∂v
v f i
i

T + RT
ivs

∂vvsi
i

∂v
v f i
i

T + RT
ivs

gi ∆t

∂v
v f i
i

T (3b)

= 03×3 − RT
ivs

∂v
v f i
i

∂v
v f i
i

T + 03×3 + 03×3 (3c)

= −RT
ivs

I3×3 (3d)

= −RT
ivs
. (3e)

Note that there is a transpose at the denominator of the partial derivative, such that the numerator
is a 3 × 1 vector, and the denominator is a 1 × 3 vector, resulting in a 3 × 3 matrix as the Jacobian.
This notation convention follows the one used in [2, Appendix B] and the typical machine learning
literature. Other than explicitly showing the transpose at the denominator, one can follow the
notation convention, for instance, in [1] or in Section 3.3.5 of [2]. Gao and Zhang in [2, Appendix
B] also provide a discussion on the notation of matrix derivatives. One should keep in mind
that the different notation convention means the same derivative, despite the slight variation in
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human-readable symbolic terms. The choice of notation here is solely a preference of the author
to keep completeness at the cost of verboseness.

Similarly, for vvsi
i , we have

∂evs

∂vvsi
i

T =
∂y

v f vs
vs

∂vvsi
i

T −

∂RT
ivs

(v
v f i
i − vvsi

i − gi ∆t)

∂vvsi
i

T (4a)

= 03×3 − RT
ivs

∂v
v f i
i

∂vvsi
i

T + RT
ivs

∂vvsi
i

∂vvsi
i

T + RT
ivs

gi ∆t

∂vvsi
i

T (4b)

= 03×3 − 03×3 + RT
ivs

∂vvsi
i

∂vvsi
i

T + 03×3 (4c)

= RT
ivs

I3×3 (4d)

= RT
ivs
. (4e)

To take the derivative w.r.t. the rotation, one can proceed with two different methods. The
first method refers to as the “Perturbation Model”, while the second refers to as the “Derivative
Model” in [2]. Although the “Perturbation Model” is more commonly used in practice, we will
also present the latter. The two methods result in similar but slightly different results. But in
practice, using both methods in an optimization problem with the same initial condition can often
result in a similar point.

2.1.1 Derivative w.r.t. rotation using the Perturbation Model

To take the derivative of evs w.r.t. the rotation Rivs using the perturbation method, we follow
the idea described in Section 3.3.4 of [2], but a right perturbation is used rather than the originally
left perturbation. The usage of right perturbation is to account for the fact that we often keep the
perturbations on the “vehicle” side of the pose, and we are working with Rivs as this is the most
appropriate way to express the IMU motion model [1, Section 9.4.3]. Note that right perturbation
is commonly used in the robotic literature when dealing with IMU-based motion models, such as
Forster et al. in [3], Brossard et al. in [4], Sola in [5], and Barfoot in Section 9.4 of [1]. Barfoot in [1,
Section 9.4.9] provides a discussion of the relations between the left and right perturbations.

To proceed with the derivative, we first define

γ
v f vs

i B v
v f i
i − vvsi

i − gi ∆t, (5)

which is the velocity difference of the final frame with respect to the starting frame among the
sliding window, expressed in inertial frame. In the perturbation model, we adopt the SO(3)-
sensitive perturbation scheme to introduce a right perturbation, exp (ψ∧vs

), over the rotation matrix,
Rivs = exp (ϕ∧vs

), to see the change of the result relative to the disturbance [2]. In this way, the
derivative is given as:

∂evs

∂ψvs
T =
∂y

v f vs
vs

∂ψvs
T −

∂RT
ivs

(v
v f i
i − vvsi

i − gi ∆t)

∂ψvs
T (6a)

= 03×3 −
∂RT

ivs

∂ψvs
T (v

v f i
i − vvsi

i − gi ∆t) (6b)
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= −
∂RT

ivs

∂ψvs
T γ

v f vs

i (6c)

= −

 limψ→0

(
Rivs exp (ψ∧vs

)
)T
− RT

ivs

ψvs
T

γv f vs

i (6d)

= −

 limψ→0

exp (ψ∧vs
)T RT

ivs
− RT

ivs

ψvs
T

γv f vs

i (6e)

= −

 limψ→0

exp (−ψ∧vs
) RT

ivs
− RT

ivs

ψvs
T

γv f vs

i (6f)

= −

 limψ→0

(I3×3 −ψ
∧
vs

) RT
ivs
− RT

ivs

ψvs
T

γv f vs

i (6g)

= −

 limψ→0

RT
ivs
−ψ∧vs

RT
ivs
− RT

ivs

ψvs
T

γv f vs

i (6h)

= −

 limψ→0

−ψ∧vs
RT

ivs

ψvs
T

γv f vs

i (6i)

= − lim
ψ→0

−ψ∧vs
RT

ivs
γ

v f vs

i

ψvs
T (6j)

= − lim
ψ→0

(
RT

ivs
γ

v f vs

i

)∧
ψvs

ψvs
T (6k)

= −
(
RT

ivs
γ

v f vs

i

)∧
I3×3 (6l)

= −
(
RT

ivs
γ

v f vs

i

)∧
(6m)

= −
(
RT

ivs
(v

v f i
i − vvsi

i − gi ∆t)
)∧
. (6n)

In Eq. (6), the third equality (6c) is obtained by substituting (5) into (6b); the fourth equality (6d) is
obtained by the definition of the derivative [2, Section 3.3.3]; the sixth equality (6f) uses the identity
of [3, Section V.A]

exp (φ∧)T
≡ exp (−φ∧), (7)

where φ is a 3 × 1 vector in R3, and φ∧ ∈ so(3); the seventh equality (6g) uses the relationship of
[3, Section III.A]

exp (φ∧) ≈ I3×3 +φ
∧, (8)

where the relationship holds whenφ is small, and the approximation approaches equality because
the limit is taken [2, Section 3.3.3]; the eleventh equality (6k) uses the identity of [3, Section III.A]
[1, Section 7.2.5]

b∧ c ≡ −c∧ b, ∀ b, c ∈ R3; (9)

and the last equality (6n) is obtained by substituting (5) into γ
v f vs

i .
At this point, we have acquired the derivatives of the measurement error, evs , w.r.t. the state

Rivs , vvsi
i , and v

v f i
i as (6), (4), and (3), respectively. In (6), the derivative is obtained using the

perturbation model. Next, we also include the derivative w.r.t. the rotation using the Derivative
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Model (Section 3.3.3 in [2]) for the sake of completeness. However, one should note that we
generally use the (6), (4), and (3) in code implementation.

2.1.2 Derivative w.r.t. rotation using the Derivative Model

To take the derivative of evs w.r.t. the rotation Rivs using the derivative model, we follow the
idea described in Section 3.3.3 of [2], but a right perturbation is used rather than the originally left
perturbation, similar to Section 2.1.1.

One should note that the Derivative Model (described in [2]) is closely related to the so-called
middle perturbation described in [1]. Barfoot in [1, Section 8.3.1] provides a discussion on the
different perturbation options (left, middle, right), and one may also read [6] for a short notes on
the topic.

Recall that we have Rivs = exp (ϕ∧vs
), where ϕ∧vs

and ϕvs are the corresponding lie algebra and
tangential vector of Rivs , respectively. Then, the derivative of evs w.r.t. the rotation Rivs is given as
[2, Section 3.3.3]:

∂evs

∂ϕvs
T =
∂y

v f vs
vs

∂ϕvs
T −

∂RT
ivs

(v
v f i
i − vvsi

i − gi ∆t)

∂ϕvs
T (10a)

= 03×3 −
∂ exp (ϕ∧vs

)T
γ

v f vs

i

∂ϕvs
T (10b)

= − lim
δϕ→0

exp ((ϕvs + δϕvs)
∧)T

γ
v f vs

i − exp (ϕ∧vs
)T
γ

v f vs

i

δϕT
vs

(10c)

= − lim
δϕ→0

(
exp (ϕ∧vs

) exp
(
( Jr δϕvs)

∧
))T

γ
v f vs

i − exp (ϕ∧vs
)T
γ

v f vs

i

δϕT
vs

(10d)

= − lim
δϕ→0

exp
(
( Jr δϕvs)

∧
)T exp (ϕ∧vs

)T
γ

v f vs

i − exp (ϕ∧vs
)T
γ

v f vs

i

δϕT
vs

(10e)

= − lim
δϕ→0

exp
(
−( Jr δϕvs)

∧
)

exp (ϕ∧vs
)T
γ

v f vs

i − exp (ϕ∧vs
)T
γ

v f vs

i

δϕT
vs

(10f)

= − lim
δϕ→0

(
I3×3 − ( Jr δϕvs)

∧
)

exp (ϕ∧vs
)T
γ

v f vs

i − exp (ϕ∧vs
)T
γ

v f vs

i

δϕT
vs

(10g)

= − lim
δϕ→0

exp (ϕ∧vs
)T
γ

v f vs

i − ( Jr δϕvs)
∧ exp (ϕ∧vs

)T
γ

v f vs

i − exp (ϕ∧vs
)T
γ

v f vs

i

δϕT
vs

(10h)

= − lim
δϕ→0

−( Jr δϕvs)
∧ exp (ϕ∧vs

)T
γ

v f vs

i

δϕT
vs

(10i)

= − lim
δϕ→0

−( Jr δϕvs)
∧ RT

ivs
γ

v f vs

i

δϕT
vs

(10j)

= − lim
δϕ→0

(
RT

ivs
γ

v f vs

i

)∧
Jr δϕvs

δϕT
vs

(10k)

= −
(
RT

ivs
γ

v f vs

i

)∧
Jr I3×3 = −

(
RT

ivs
(v

v f i
i − vvsi

i − gi ∆t)
)∧

Jr (10l)
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where Jr B Jr(ϕvs) is the 3 × 3 right Jacobian of the tangential vector, ϕvs . The expression of right
Jacobian is given as ([3, Section III.A] and [1, Section 8.1]):

Jr(φ) =
sinφ
φ

I3×3 + (1 −
sinφ
φ

) aaT
−

1 − cosφ
φ

a∧ (11a)

≡ I3×3 −
1 − cosφ
φ2 φ∧ +

φ − sinφ
φ3 (φ∧)2, (11b)

where φ is a 3 × 1 tangential vector corresponding to a rotation; φ = ∥φ∥ is a scalar denoting the
angle of rotation; and a = φ

φ =
φ
∥φ∥ is a 3 × 1 unit vector representing the axis of rotation.

In Eq. (10), the third equality (10c) is obtained by the definition of the derivative; the fourth
equality (10d) is obtained through the first order Baker-Campbell-Hausdorff (BCH) approximation
([2, Section 3.3.3], [3, Section III.A], [1, Section 8.1]):

exp ((φ + δφ)∧) ≈ exp (φ∧) exp
(
( Jr(φ) δφ)∧

)
, (12)

where the relationship holds when δφ is small, and the approximation reaches equality because
the limit is taken; the sixth equality (10f) is obtained through the identity described in (7); the
seventh equality (10g) uses the relationship described in (8), which is a first-order Taylor-series
approximation omitting the higher-order terms, and the equality holds because the limit is taken
[2, Section 3.3.3]; the eleventh equality (10k) is obtained by using the identity described in (9); and
the last equality is achieved by substituting (5) into γ

v f vs

i .
When comparing (6) to (10), we can observe that the result derived from the Derivative Model

requires the computation of an additional term of Jr(ϕvs), while the remaining parts stay the same.
In practice, it is more common to use the derivative obtained through the Perturbation Model, i.e.,
(6), which has a simpler form and requires fewer computation [2, Section 3.3.3 - 3.3.4].

In the next subsection, we present another way to derive the Jacobian, and the final result will
be consistent with the ones given by (3), (4), and (6).

2.2 Computing Derivatives w.r.t. Vehicle State by Perturbation

Another way to approach the problem is to treat the state as Gaussian random variables, where
each state variable comprises a ‘large’, noise-free component and a ‘small’ noisy component that
is zero-mean [1, Section 8.3]. In this way, for SO(3), a random variable, R, will have the form

R = R exp (ψ∧) , (13)

where R ∈ SO(3) is a ‘large’, noise-free, nominal rotation; andψ ∈ R3 is a ‘small’, noisy component
(i.e., a random variable from a vector space) [1, Section 8.3]. Notice that (13) has a similar form
as the Perturbation Model introduced in Section 2.1.1, so we can treat exp (ψ∧) as a perturbation
applied to a nominal rotation, R.

Similarly, for velocities in R3, we have

v = v + δv (14)

where v is a noise-free nominal velocity, and δv is a zero-mean Gaussian noise (treated as a
perturbation). In this way, we can formulate our state variables as

Rivs = Rivs exp (ψ∧vs
) (15a)
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v
v f i
i = v

v f i
i + δv

v f i
i (15b)

vvsi
i = vvsi

i + δv
vsi
i , (15c)

where in practice, we often use our current estimate of the state as the nominal value (called the
operating point), and the perturbations are the changes of values that will be used to update the
state estimates.

At this point, we can substitute Eq. (15) into (2) and manipulate as

evs = y
v f vs
vs
−

(
Rivs exp (ψ∧vs

)
)T (

(v
v f i
i + δv

v f i
i ) − (vvsi

i + δv
vsi
i ) − gi ∆t

)
(16a)

= y
v f vs
vs
− exp (ψ∧vs

)T R
T
ivs

(
( v

v f i
i − vvsi

i − gi ∆t) + δv
v f i
i − δv

vsi
i

)
(16b)

≈ y
v f vs
vs
− (I3×3 +ψ

∧

vs
)T R

T
ivs

(
( v

v f i
i − vvsi

i − gi ∆t) + δv
v f i
i − δv

vsi
i

)
(16c)

= y
v f vs
vs
− (I3×3 −ψ

∧

vs
) R

T
ivs

(
( v

v f i
i − vvsi

i − gi ∆t) + δv
v f i
i − δv

vsi
i

)
(16d)

= y
v f vs
vs
−

(
R

T
ivs
−ψ∧vs

R
T
ivs

) (
( v

v f i
i − vvsi

i − gi ∆t) + δv
v f i
i − δv

vsi
i

)
(16e)

= y
v f vs
vs
−

(
R

T
ivs
−ψ∧vs

R
T
ivs

) (
γ

v f vs

i + δv
v f i
i − δv

vsi
i

)
(16f)

= y
v f vs
vs
− R

T
ivs
γ

v f vs

i − R
T
ivs
δv

v f i
i + R

T
ivs
δvvsi

i +ψ
∧

vs
R

T
ivs
γ

v f vs

i + ψ∧vs
R

T
ivs
δv

v f i
i −ψ

∧

vs
R

T
ivs
δvvsi

i︸                             ︷︷                             ︸
omit higher order perturbation terms

(16g)

≈ y
v f vs
vs
− R

T
ivs
γ

v f vs

i − R
T
ivs
δv

v f i
i + R

T
ivs
δvvsi

i +ψ
∧

vs
R

T
ivs
γ

v f vs

i (16h)

= y
v f vs
vs
− R

T
ivs
γ

v f vs

i − R
T
ivs
δv

v f i
i + R

T
ivs
δvvsi

i −

(
R

T
ivs
γ

v f vs

i

)∧
ψvs (16i)

= evs − R
T
ivs
δv

v f i
i + R

T
ivs
δvvsi

i −

(
R

T
ivs
γ

v f vs

i

)∧
ψvs (16j)

= evs +
[

R
T
ivs
−R

T
ivs
−

(
R

T
ivs
γ

v f vs

i

)∧] 
δvvsi

i

δv
v f i
i
ψvs

 (16k)

= evs + F δx , (16l)

where we have defined

γ
v f vs

i B v
v f i
i − vvsi

i − gi ∆t , (17a)

evs B y
v f vs
vs
− R

T
ivs
γ

v f vs

i , (17b)

F B
[

R
T
ivs
−R

T
ivs
−

(
R

T
ivs
γ

v f vs

i

)∧]
3×9
, (17c)

δx B


δvvsi

i

δv
v f i
i
ψvs


9×1

. (17d)

In Eq. (16), the approximation (16c) is obtained by using (8); the fourth equality (16d) is
obtained through the identity [1]:

c∧
T
≡ −c∧, ∀ c ∈ R3; (18)
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the sixth equality (16f) is obtained by using the definition (17a); the approximation (16h) is caused
by omitting the higher-order perturbation terms; the ninth equality (16i) is obtained through the
identity (9); the tenth equality (16j) substitutes in the definition (17b); and the last two equalities
(16k) and (16l) are obtained by arranging the coefficient matrices and state variables into a stacked
form as (17c) and (17d), respectively.

We observe that the stacked coefficient matrix (17c) is consistent with the results that we have
acquired in (3), (4), and (6). We should note that Eq. (16) has the form of a ‘first-order’ Taylor-series
approximation as

e(x + δx) ≈ e(x) +
∂e(x)
∂xT

∣∣∣∣∣
x
δx ,

where x, x, and δx are the stacked state variable, nominal component of the state variable, and
perturbation component of the state variable, respectively [1].

It is worthwhile to reiterate that this set of notes only documents two possible ways to derive
the Jacobian with first-order approximations used in several steps. There are other forms of the
Jacobian (e.g., using a higher-order approximation) which can be used in practice (and even give
a more accurate result).
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